Preparation of Fluorolactones from the Reaction of  $\gamma$ -Ketoacids with Diethylaminosulfur Trifluoride

Timothy B. Patrick\* and Yam-Foo Poon

Department of Chemistry, Southern Illinois University

Edwardsville, Illinois 62026 USA

Summary. Levulinic acid and related  $\gamma$ -ketoacids react with diethylaminosulfur trifluoride to give  $\gamma$ -fluorobutyrolactones in good yield. The involvement of a bicyclic (3.2.1) mechanism is considered.

The reactions of o-benzoylbenzoic acid and levulinic acid with thionyl chloride are known to produce the  $\gamma$ -chlorolactones 1 and 2, respectively.<sup>1</sup>



CI CH<sub>3</sub> <u>2</u>

Newman, et al., proposed a novel bicyclic (3.2.1) mechanism from intermediate <u>A</u> to explain the formation of <u>1</u> and <u>2</u>, and subsequently used the concept of bicyclic mechanisms to predict the products of many other reactions.<sup>2</sup>,<sup>3</sup>



The report by Middleton in 1975 that diethylaminosulfur trifluoride (DAST) converts hydroxyl groups into fluorides<sup>4</sup> led us to suspect that DAST would react with acids in a manner similar to that of thionyl chloride. Thus, we investigated the reaction of several Y-ketoacids with DAST.

The reactions of ketoacids 3-6 with DAST in chloroform solution gave the corresponding fluorolactones, 7-10, respectively (Table I). The formation of the fluorolactones is postulated to occur through intermediate <u>B</u>, formed between the acid and DAST in a manner similar to that proposed by Middleton for reactions of alcohols with DAST. Intermediate <u>B</u> then transforms into product by a bicyclic (3.2.1) path similar to that proposed by Newman.



A mechanism in which the acid is first converted to an acid fluoride which adds to the  $\gamma$ -keto function cannot be ruled out entirely, but we assume that a one-step intramolecular cyclization would be preferred over a two-step mechanism in accord with previous work.<sup>3</sup>

We also studied the reaction between acetone, benzoic acid and DAST. The observed fluoroester product (<u>11</u>) can be postulated to occur by an intermolecular cyclic path (<u>C</u>). However, we observed that prior reaction of benzoic acid with DAST produces benzoyl fluoride which gives (<u>11</u>) on addition of acetone. Thus the mechanism depends on the timing of the competing processes.



|                                    |                                                         | Properti | Table I<br>es of Y-Fluorolactones                                                                                       |                                                             |                      |
|------------------------------------|---------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|
| Acid                               | Product                                                 | % Yield  | 13c NMRa                                                                                                                | Ің имкр                                                     | 19 <sub>F</sub> NMRC |
| benzoylpropionic<br><mark>3</mark> | Ph <sup>F</sup>                                         | 85       | 33.4(d,CH <sub>2</sub> J=15)<br>36.0(s,CH <sub>2</sub> )<br>118.8(d,CF,J=228)<br>125.2-132.9(6, aromatic)               | 3.0(m,CH <sub>2</sub> CH <sub>2</sub> )<br>7.4,79(aromatic) | 120.7(m)             |
| levulinic                          | -1                                                      | 06       | 23.4(d,CH <sub>3</sub> ,J=29.3)                                                                                         | l.31-2.9(m, aliphatic                                       | 93.4                 |
| 4                                  |                                                         |          | 33.1(d,CH2,J=28.3)<br>37.0(s,CH2)<br>117.5(d,CF,J=225)<br>175(s,C=0)                                                    | 1.75(d,CH <sub>3</sub> ,J=17.4)                             | (m, CF)              |
| o-acetylbenzoic<br>                | CH <sup>3</sup> C <sup>4</sup>                          | 95       | 22.7(d,CH3,J=33)<br>114.6(d,CF,J=229)<br>122,126,130,132,135,<br>(aromatic)<br>145.9(d, aromatic,J=21)<br>166.9(s, C=0) | 1.95(d,CH , J=18)<br>7.7(m, aromatic)                       | 95.6<br>(q,J=18)     |
| o-benzoylbenzoic<br><u>6</u>       | Ph <sup>r</sup>                                         | 93       | <pre>114(d,CF,J=229) 123-135(seven, aromatic) 145.9(d, aromatic, J=225) 166.8(s, C=0)</pre>                             | 7.46(m, aromatic)                                           | 101.6<br>(s)         |
| acetone,<br>benzoic acid           | $\Pr_{\text{PhC}-0-\Pr_{F}^{0}(\text{CH}_{3})_{2}}^{0}$ | 95       | 24.5(d,CH3,J=26)<br>115.2(d,CF,J=213)<br>128-235(six, aromatic)<br>163(s, C=0)                                          | 1.85(d,CH <sub>3</sub> ,J=19)<br>7.5,8.0(m,aromatic)        | 95.9<br>(seven,J=19) |
|                                    |                                                         |          | molating to totramethyleils                                                                                             | ine (TMS) (0,0). Countin                                    | e constants          |

- a)
- CDCl<sub>3</sub> solution. Chemical shifts are in ppm relative to tetramethylsilane (TMS) ( $\emptyset$ .0). Coupling constants are in Hertz. The spectra are proton decoupled. CDCl<sub>3</sub> solution. Chemical shifts are in ppm relative to TMS. Coupling constants are in Hertz. CDCl<sub>3</sub> solution. Chemical shifts are in ppm relative to external Freon-11 (CFCl<sub>3</sub>,  $\emptyset$ 0.0). Coupling constants are in Hertz. ର୍ଦ୍ଦ ଦ

ş

.... an.

\* 5

The fluoro products are easily characterized by a doublet for the CF carbon observed at 114-118 ppm ( $J_{CF}$  = 228 Hz) in the <sup>13</sup>C NMR spectrum, and by the high IR absorption band of 1790-1800 cm<sup>-1</sup> for the carbonyl absorption frequency. The products are, however, relatively unstable, not amenable to C, H, F elemental analysis, and lose HF on standing several hours at room temperature, but they may be kept in a freezer for several days.

A typical reaction procedure consists of adding 0.01 mole of cold neat DAST to a solution consisting of 0.01 mole of ketoacid in 10 mL of dry reagent grade chloroform at  $0^{\circ}$  C. After 0.5 hours the yellow solution is extracted with dilute sodium bicarbonate solution and the organic solution is concentrated on a rotary evaporator to give the fluorinated product which is stored in a freezer.

Our work on the concept of using bicyclic and cyclic mechanisms to construct new fluorinated organic systems is continuing.<sup>5</sup>

## References

- 1) Renson, M., Bull. Soc. Chim. Belges., (1961), 70, 77.
- 2) Newman, M.S.; Courduvelis, C., J. Am. Chem. Soc., (1964), 86, 2942.
- Newman, M.S.; Courduvelis, C., J. Am. Chem. Soc., (1966), <u>88</u>, 781; Newman, M.S.;
   Gill, N.; Darre, B., <u>J. Org. Chem.</u>, (1966), <u>31</u>, 2713; Newman, M.S.;
   Mladenovic, S., <u>J. Am. Chem. Soc.</u>, (1966), <u>88</u>, 4523; Newman, M.S.; Lala, L., <u>J. Org. Chem.</u>, (1967), <u>32</u>, 3225; Newman, M.S.; Mladenovic, S.; Lala, L.; <u>J. Am. Chem. Soc.</u>, (1968), <u>90</u>, 747; Newman, M.S.; Gupte, S., <u>J. Org. Chem.</u>, (1970), <u>35</u>, 2757.
- 4) Middleton, W.J.; J. Org. Chem., (1975), 40, 574.
- We thank Professor M.S. Newman for helpful comments about the mechanisms involved in our work.

(Received in USA 14 November 1983)